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ABSTRACT

Motivation: Protein domain classification is an important step in func-

tional annotation for next-generation sequencing data. For RNA-Seq

data of non-model organisms that lack quality or complete reference

genomes, existing protein domain analysis pipelines are applied to

short reads directly or to contigs that are generated using de novo

sequence assembly tools. However, these strategies do not provide

satisfactory performance in classifying short reads into their native

domain families.

Results: We introduce SALT, a protein domain classification tool

based on profile hidden Markov models and graph algorithms. SALT

carefully incorporates the characteristics of reads that are sequenced

from the domain regions and assembles them into contigs based on a

supervised graph construction algorithm. We applied SALT to two

RNA-Seq datasets of different read lengths and quantified its perform-

ance using the available protein domain annotations and the reference

genomes. Compared with existing strategies, SALT showed better

sensitivity and accuracy. In the third experiment, we applied SALT

to a non-model organism. The experimental results demonstrated

that it identified more transcribed protein domain families than other

tested classifiers.

Availability: The source code and supplementary data are available at

https://sourceforge.net/projects/salt1/

Contact: yannisun@msu.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Inferring functions from sequences remains important in analyz-

ing different types of sequencing data including those generated

by the next-generation sequencing (NGS) technologies. One

basic step during the functional analysis is to assign sequences

into different functional categories, such as families of protein
domains (or domains for short), which are independent folding

and functional units in a majority of annotated protein

sequences.
Protein domain analysis has been widely used for functional

annotations of RNA-Seq data (Li et al., 2011; Mutasa-Göttgens

et al., 2012; Orshinsky et al., 2012; Schmid et al., 2012). In par-

ticular, quantifying the expression levels of protein domains
helps us understand how transcriptional changes of domains

are associated with sequencing conditions, sampling tissues or

experimental treatments in RNA-Seq data. For example, com-

putational domain analysis was applied to identify domains that
play a role in vernalization and efflux transporters in the gibber-

ellin response in sugar beets (Mutasa-Göttgens et al., 2012).
Domain analysis is also frequently used to evaluate and compare

gene annotation quality of different gene-finding tools (Li et al.,

2011) or to compare domain composition of data sampled using
different techniques (Schmid et al., 2012).
The state-of-the-art method for protein domain analysis is still

based on comparative sequence analysis, where query sequences

are annotated via comparison with characterized sequence data-
bases. Depending on the alignment algorithms and the target

databases, domain analysis methods can be divided into two

groups. The first one is to compare the sequences against publicly
available reference protein sequence databases using pairwise

alignment tools such as BLAST (Altschul et al., 1990). The
second method is a profile-based similarity search, which classi-

fies queries into characterized protein domain or family data-

bases such as Pfam (Finn et al., 2010), TIGRFAM (Haft et al.,
2003), FIGfams (Meyer et al., 2009) and so forth. There also

exist comprehensive protein domain search tools such as
InterProScan (Quevillon et al., 2005), which combines different

sequence and profile-based domain recognition methods from

the InterPro (Hunter et al., 2009) consortium member databases
into one resource.

Compared with the first method, the profile-based method has
two advantages. First, its running time mainly depends on the

growth of the data to be analyzed because the number of
families/domains grows slowly and is much smaller than the se-

quence databases such as NCBI-nr. Second, previous work

(Durbin et al., 1998) has shown that using position-specific con-
servation information can improve the sensitivity of a remote

protein homology search, which is especially important for iden-
tifying new homologs in NGS data. One of the most widely used

profile-based domain classification tool is HMMER (http://

hmmer.janelia.org/), which relies on profile hidden Markov
models (profile HMMs) to deliver sensitive domain classification

for remote homologs.
Existing domain classification tools are mainly designed for

complete or near-complete domain member sequences rather
than fragmentary and short reads in NGS data. BLAST-based

and profile-based domain classification tools rely on alignment

scores to distinguish true homologous sequences from false ones.
Short reads incur marginal alignment scores and thus can be

easily missed by these tools. In particular, BLAST-based tools*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2103

 at M
ichigan State U

niversity on Septem
ber 16, 2014

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

https://sourceforge.net/projects/salt1/
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt357/-/DC1
Li etal.,2011;
,
beet
, etc
to 
http://hmmer.janelia.org/
http://hmmer.janelia.org/
http://bioinformatics.oxfordjournals.org/


have low sensitivity for short reads of remote homologs
(Wommack et al., 2008). Although HMMER can achieve high
sensitivity in recognizing remote homologs of a domain family, it

shows low sensitivity in classifying partial sequences of remote
homologs (Zhang and Sun, 2012).
When the reference genomes are available, genome-wide gene

and domain annotations and read mapping positions can be
combined to determine the membership of reads. However,
many NGS datasets lack complete or quality reference genomes,

such as complicated metagenomic datasets and transcriptomic
data of some non-model organisms. For these data, protein
domain analysis is applied to the short reads directly or to the

contigs that are generated by de novo sequence assembly tools.
Contigs produced by de novo sequence assembly tools enable
NGS data analysis to take advantage of conventional bioinfor-

matics tools designed for longer sequences. However, using se-
quence assembly tools as the first step is not ideal for protein

domain classification. First, the quality of read assembly deteri-
orates significantly in complicated NGS datasets (Jeffrey and
Zhong, 2011). Different sequence assembly tools generate differ-

ent sets of contigs. There is no consensus on the best assembly
tool. Second, successful de novo assembly requires high
sequencing depth, which is difficult to achieve for all domain

regions. It is often observed that some domain regions are
highly transcribed, whereas others are transcribed much less.
Third, different protein-coding genes can share the same

domain. As a result, similar domain regions can contribute to
the nodes forming crossing points between different paths in a
De Bruijn graph. Those repeat-like sequences add difficulty to de

novo sequence assembly. Thus, there is a need for an alternative
and better domain classification tool for NGS data lacking ref-

erence genomes.
In this work, we designed a Sensitive and Accurate protein

domain cLassification Tool (SALT), which uses profile HMMs

and family-specific contig generation algorithms to classify short
reads into domains. SALT is mainly designed for domain clas-
sification in transcriptomic data of non-model organisms that

lack complete or high-quality reference genomes and for meta-
genomic datasets. In this work, we focus on RNA-Seq of non-
model organisms. To evaluate the performance of SALT, we

applied SALT to RNA-Seq data of species with quality reference
genomes. Read mapping and genome-wide domain annotations
are combined as the ‘ground truth’ for evaluating the read clas-

sification sensitivity and specificity. SALT was benchmarked
with several popular domain classification strategies. The com-
parison shows that SALT can correctly classify significantly

more reads into their native domains while keeping the same
or better specificity. Finally, we demonstrated the utility of
SALT on an RNA-Seq dataset of a non-model organism.

Although we will use protein domains when describing the
methods and results, SALT can be applied to both domain

families and protein families. In this work, we used the families
in Pfam (Finn et al., 2010), which include both domain families
and protein families.

2 RELATED WORK

HMMER is the representative implementation of a profile

HMM-based domain classification tool. In conjunction with

the Pfam database (Finn et al., 2010), which contains410 000

annotated protein domain families, HMMER can accurately

classify query protein sequences into existing domain families.

However, HMMER can fail to recognize short reads sequenced

from remote homologs of a domain family. Our previous work

(Zhang and Sun, 2012) evaluated how read lengths affected the

performance of HMMER on a large number of domains. Profile

HMM-based tools have a sensitivity of 0.9 in classifying reads of

80 bp into domains with an average sequence identity 440%.

However, for poorly conserved domains, which are not rare, a

significant number of reads cannot be correctly classified. Even

for a domain with good average conservation along each pos-

ition, short reads that are sequenced from less well-conserved

regions tend to be missed by existing methods.

HHblits (Remmert et al., 2012) uses HMM–HMM alignment

to conduct fast iterative protein sequence searches and can gen-

erate accurate alignment. However, it is not especially designed

for NGS data and has unsatisfactory classification sensitivity for

short and fragmentary reads, which we show in our experiments.
To take advantage of conventional functional analysis pipe-

lines, de novo sequence assembly tools can be applied to produce

contigs, which are used as input to gene finding or domain ana-

lysis tools. The performance of short read assemblers depends on

read length, complexity of the data, sequencing depth and so

forth. Recent reviews (Jeffrey and Zhong, 2011; Miller et al.,

2010) summarize several challenges of de novo assembly tools.

Recently, several popular de novo assembly tools were applied to

the transcriptomes of non-model species (e.g. Radix balthica and

sugar beets) (Feldmeyer et al., 2012; Mutasa-Göttgens et al.,

2012). The assemblies generated by the tested tools differed in

total number of contigs, contig length and number and quality of

gene hits, showing the need for better assembly methodology.
Some other work (Zhang and Sun, 2011) aimed to develop

domain classification tools for reads containing frameshift

errors. The insertion or deletion errors in homopolymer regions

of pyrosequencing reads can cause frameshifts, compounding

domain classification. This work focused on short reads that

are usually produced by the Illumina platform, which tends to

have substitution rather than insertion or deletion errors. SALT

is able to deal with substitution errors during domain

classification.

3 METHODS

3.1 Overview of SALT

As a protein domain classification tool, SALT takes query reads and a list

of protein domain families of interest as input. The output is a list of

transcribed families and the classified reads for each family. Figure 1

shows a piece of a genomic sequence with annotated domains and the

sequenced reads. In this example, if a read is sequenced from domain X in

a gene, we call it a positive read with regard to domain X. Otherwise, it is

a negative read with regard to domain X. An ideal domain classification

program should classify only the positive reads into the corresponding

domain family.

Positive reads have the following features: (i) many positive reads tend

to share higher sequence similarity with the underlying family than nega-

tive reads, yielding higher alignment scores; (ii) positive reads can be

assembled into contigs that have statistically significant alignment

scores against their native families. Existing domain classification tools,
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such as HMMER, mainly use the first feature. However, directly apply-

ing HMMER to short reads tends to yield unsatisfactory sensitivity

because short positive reads have marginal alignment scores. De novo

assembly tools can partially solve this problem, but their performance

depends a lot on sequencing depth, similarities of domain copies in

different genes and so forth.

SALT takes advantage of both features by incorporating profile-based

domain alignment methodology into a supervised contig generation al-

gorithm. The pipeline of SALT (Supplementary Fig. 1) can be divided

into three main stages: profile HMM-based filtration, contig generation

and contig selection. In the first stage, we align query reads against profile

HMMs, which represent the underlying domain families, using a mod-

ified Viterbi algorithm. A loose position-specific score cutoff (Zhang and

Sun, 2012) is used to keep most positive reads. The first stage trades

specificity for sensitivity, as some negative reads pass the filtration

stage. The rationale behind the second and third stages for removing

negative reads is that the positive reads tend to be sequenced from con-

tinuous regions of a domain and their assembled contigs can yield stat-

istically significant alignment scores and E-values. The second stage

builds a family-specific hit graph using a supervised graph construction

algorithm. Contigs can be efficiently generated from each hit graph. The

third stage aligns these contigs to input families using HMMER. E-values

are computed to choose sequences that are part of domain regions. Reads

from the high-scoring contigs are classified into the corresponding family.

3.2 Stage 1: profile HMM-based filtration

The first stage of SALT aligns reads to profile HMMs, which are built on

homologous domain sequences from Pfam. The software suite HMMER

uses Viterbi and forward algorithms to determine the membership of

query sequences via E-value cutoffs. However, the sensitivity of

HMMER drops significantly for short sequences or poorly conserved

protein domain families. To address this problem, SALT uses position-

specific score thresholds (PSSTs) and a modified Viterbi algorithm

(Zhang and Sun, 2012) to align reads to profile HMMs. For the standard

Viterbi algorithm on a profile HMM, we refer users to the detailed intro-

duction in Durbin et al. (1998). The modified Viterbi algorithm used in

SALT differs from the standard one in the following aspects: (i) SALT

directly aligns a DNA sequence against a profile HMM by implicitly

translating the DNA sequence into peptides under different reading

frames; (ii) a local alignment can start and end with any state without

any transition penalty; and (iii) SALT uses PSSTs as alignment score

cutoffs.

3.2.1 Position-specific score threshold PSST was designed for

MetaDomain (Zhang and Sun, 2012) to increase the short read classifi-

cation sensitivity by profile HMMs. Instead of using a family-specific

score cutoff, PSST defines different cutoffs depending on the alignment

positions. For an alignment falling between two match states Mi and Mj

in a profile HMMM, the score cutoff is �Ui, j, where � is a user-specified

parameter in the range of [0, 1]. Ui, j is the maximum alignment score

betweenMi andMj. Gamma controls the strength of the filtration. Large

� decreases the sensitivity of filtration, whereas small � introduces false-

positive hits. Users can adjust � to accommodate their specific needs.

The default value of � is 0.3, which was used in all our experiments.

When � is small, a read may be classified into multiple families in the

first stage. We require that each read be assigned to at most three input

families that generate the best alignment scores.

3.3 Stage 2: contig generation

The filtration stage uses loose PSSTs to trade specificity for sensitivity.

Some negative reads can pass the filtration stage. Given medium to high

sequencing coverage, positive reads are usually sequenced from continu-

ous regions in a domain. Accordingly, their alignments to the underlying

profile HMM overlap. This stage assembles reads with overlapping align-

ments. Specifically, we construct a family-specific hit graph using reads

classified to the underlying family by the first stage. A path-searching

algorithm is then applied to each hit graph to generate contigs for each

domain family.

3.3.1 Constructing a hit graph for a family A standard overlap

graph is defined as G ¼ ðV,EÞ, in which each read is a node and overlaps

larger than a given cutoff are indicated by directed edges. A hit graph

originates from an overlap graph. However, its construction and the

graph traversal algorithms are different from a standard overlap graph.

We describe the hit graph construction procedure using Figure 2 as an

example, focusing on the differences between a hit graph and a standard

overlap graph.

3.3.2 Step 1 A node is created for each read passing the filtration

stage for a domain family. In Figure 2, a read hi creates a node vi in

the graph. Thus, different from a standard overlap graph, only reads that

are likely to be classified into a family are used to build the hit graph. In

addition, a hit graph is family specific. N hit graphs will be built for N

input families.

3.3.3 Step 2 Edges are created using alignment positions of reads. For

any two reads hi and hj that are classified into a family by the filtration

stage, their overlap is computed if and only if the alignments of hi and hj
overlap. If the overlap between hi and hj is at least k

�, which is a user-

specified overlap threshold, a directed edge is created from hi to hj. For

example, in Figure 2A, which shows the alignment layout for 13 reads,

the alignment of h1 and h2 overlap and h1 has a smaller starting position.

SALT only tests whether a suffix of h1 is a prefix of h2. In addition, as the

alignments of reads h1, h2 and h3 share no overlap with alignments of

reads from h6 to h13, SALT does not test the sequence overlaps between

any two reads from the two sets. If two reads have the same starting

position in their alignments, the bi-directional overlaps will be computed.

Figure 2B shows the added edges. Different from the standard overlap

graph construction, this step takes advantage of the alignment positions

and presents an efficient family-specific graph construction procedure.

The graph construction stage allows substitution sequencing errors,

which are the major error type with the Illumina sequencing technology.

During the sequence overlap computation, at most e errors are permitted;

e¼ 2 in the current implementation. The parameter e can be adjusted to

fit the error rate of the given data. Given e, the overlap oi, j from read hi to

hj is the size of the longest suffix of hi that has Hamming distance � e to a

prefix of hj.

Users can specify k�, which can be estimated based on the same ra-

tionale as the choice of k-mer size in a de novo sequence assembly tool.

The default value of k� is set to half of the average read length for rela-

tively short reads. When the reads are long (�100bp), using the default

value is too stringent for hit graph construction. In addition, the filtration

stage is more specific with longer reads. Thus, we recommend using a

smaller value than the default one.

It is worth mentioning that using alignment information to supervise

the graph construction was also used for RNA virus population

genomic
sequence

reads

domain X domain X

gene A gene B

Fig. 1. Two genes, their domain organizations and the sequenced reads.

Domain X occurs in two different genes. Both genes are transcribed and

sequenced. Red lines: positive reads. Blue lines: negative reads
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estimation (Eriksson et al., 2008). But the application, input data and

alignment stage are all different from SALT.

3.3.4 Step 3 The graph G built so far contains many near-identical

paths because of edges created by transitive overlaps (Schatz et al., 2010).

For example, the overlap between reads h1 and h3 in Figure 2A is a

transitive overlap because longer overlaps exist between h1 and h2, h2
and h3. Transitive overlaps add unnecessary edges without contributing

to read classification because those reads can be identified using an alter-

native (usually longer) path. Thus, all edges corresponding to transitive

overlaps [such as ðv1, v3Þ] are removed.

3.3.5 Step 4 We add edge weights, which are defined based on both

the overlaps and the alignment scores of reads. Contigs connecting posi-

tive reads can be aligned to the underlying domain family with much

better scores than the short reads, rendering significantly better discrim-

inative power. Thus, we assign the edge weights so that the path weight is

proportional to the alignment score of the corresponding contig.

Negative reads that are sequenced from a continuous region may

happen to pass the filtration stage and thus can form a path in G as

well. However, their summed alignment score (i.e. the path weight) will be

much smaller. Thus, by outputting the long paths, we have a better

chance to pick positive reads.

The weight of an edge ðvi, vjÞ between reads hi and hj is proportional

to the increased alignment score contributed by the ending read

hj: ðvi, vjÞ:weight ¼
hj :score�ðjhjj�oi, jÞ

jhj j
, where hj:score is the alignment score

of the read hj,,jhjj is the read length and oi, j is the overlap between hi
and hj defined in this section. The edge weights computed using the above

equation are shown in Figure 2B. To incorporate alignment scores for

nodes that have zero in-degree (i.e. no incoming edges, such as v1 and v6
in Fig. 2B), we add a root node to G such that there is an edge from the

root to every node with zero in-degree. The overlap of these edges is set to

0. Naturally, the edge weights are equal to the alignment scores of these

nodes (reads). For examples, refer to the edges ðroot, v1Þ and ðroot, v6Þ in

Figure 2C.

The aforementioned steps are applied to each family that has at least

one classified read after the filtration stage. The pseudocode for the con-

struction of G can be found in Supplementary Procedure S1.

3.3.6 Find the K longest paths Every path in a hit graph defines a

contig. The weight of a path is the sum of weights of all the edges in the

path. Contigs assembled from positive reads generally have larger scores

and thus larger path weights. Therefore, to classify positive reads, we

need to find the K longest paths (KLPs) in G, where K is a parameter

that controls the number of contigs that will be generated.

To use a small set of paths to cover a majority of positive reads, we

should avoid outputting a path that is a subpath of any other generated

path. Considering that the weights of all edges are positive, the KLPs will

always begin with the root and end with a node without outgoing edges

(i.e. sinks).

Using the sorted alignment positions to construct G ensures thatG is a

directly acyclic graph (DAG). To find the KLPs inG, we apply a dynamic

programming algorithm extended from the algorithm that finds the long-

est path in a DAG. Let V0 ¼ fv01, v
0
2, :::, v

0
Ng be the list of all nodes after

topological sorting of G. Let S be a list of all sinks inG. Let P½0::N� be an

array of Nþ 1 lists such that P½j� keeps at most K longest paths that end

with v0j. P½0� is reserved for the root and is initialized to 0. Then we can fill

P½0::N� using the following recurrence relation:

P½j� ¼ KLargestðv0
i
, v0jÞ2E, 1�k�K

ðP½i�½k� þ ðv0i, v
0
jÞ:weightÞ,

where KLargest returns the K largest values in a list. This equation shows

that the KLPs ending with a node are chosen from all the KLPs ending

with its predecessors. The KLPs of G are the KLPs among all the paths

that end with a sink node.

There are several algorithms available to find the K shortest simple

(loopless) paths between two nodes in a graph (Brander and Sinclair,

1995; Eppstain, 1994; Yen, 1971). These algorithms can also be applied

to the KLP problem by simply negating the weights of all edges. A hit

graph is usually sparse, and therefore jEj is close to jVj (data will be

shown in the ‘Results’ section). Moreover, K is generally smaller than

jVj. Therefore, our DP algorithm is more efficient to solve our KLP

problem than other general K shortest simple (loopless) path algorithms.

The choice of K aims at including contigs assembled from positive

reads. Large K slows down the algorithm; small K can make SALT

miss positive reads. As the size of the graph is not large because of the

filtration step, we trade efficiency for sensitivity in the current parameter

choice. By default, K ¼ jSj, where jSj is the number of sinks in G. When

the hit graph is large, a smaller K is recommended for efficiency purpose.

3.4 Stage 3: E-value computation and contig selection

Although most of the top K longest paths contain only positive reads,

some of them may be assembled from negative reads. In principle, some

negative reads that are sequenced from continuous regions outside of

domains can pass the filtration stage because of the loose PSSTs. These

reads can form paths inG. When K is large, the paths containing negative

reads will be included in KLPs. This happens more often for domains

Fig. 2. (A) Thirteen reads and their alignment layout with regard to the

profile HMM represented by its match states. The alignment scores are

shown in the table. Blue reads: negative reads. Red reads: positive reads.

(B) The constructed hit graph when k� ¼ 4. For simplicity of explanation,

mismatches are not allowed in this simple example. Red nodes are created

by positive reads. Blue nodes are created by negative reads. (C) The hit

graph after removing transitive overlaps and adding the root node
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with low sequence conservations. Thus, we need a reliable and well-tested

scoring system and cutoffs to distinguish between positive and negative

contigs, which consist of positive and negative reads, respectively. To that

end, we choose HMMER because it can provide efficient and reliable

E-value computation. We first translate candidate contigs into peptides

using multi-frame translation. Then these peptides are aligned against the

input family using HMMER. As the contigs are much longer than the

reads, HMMER is able to select positive contigs from the input using

E-value cutoffs. Users can specify the E-value cutoff. The default E-value

cutoff is 10�6 for this stage to ensure high specificity. All reads of the

selected contigs will be classified into the input family. This is the final

classification result for each family.

3.5 Running time analysis

Let the number of input reads be N and the average read length be jhj.

The time complexity of the first stage is OðNjhjMÞ for one family, where

M is the number of match states in a family. M is mainly determined by

the size of a domain family and M55N. Suppose there are N1 reads

passing the filtration stage. Usually, N155N. In the second stage, the

time complexity of graph construction is Oð�jhj2N1Þ, where � is the aver-

age number of overlapping alignments. During graph construction, we

use alignment positions to guide the overlap computation, avoiding the

all-against-all comparison needed in a standard overlap graph construc-

tion. The time complexity of searching for the KLPs is

OðKlogKjEj þ jVjÞ, where jVj is the number of nodes and jEj is the

number of edges in the graph. According to the graph construction pro-

cedure, jEj � jVj ¼ N1. Suppose there are N2 contigs produced from the

hit graph. The time complexity of the last stage is determined by

HMMER. Because of various optimization techniques and heuristics,

the latest version of HMMER is as fast as BLAST (Eddy, 2009). In

addition, under the default setup, N2 is at most the number of sink

nodes in the hit graph, and thus N25N1. As a result, the last stage

only adds a small overhead to the overall time complexity. The overall

time complexity of SALT is determined by the first stage, which is the

bottleneck because of large input size N.

4 RESULTS

To show the utility of SALT, we applied it to three RNA-

Seq datasets and compared its performance with HMMER,

HHblits and a pipeline that uses de novo sequence assembly

tools and HMMER. For brevity of description, we use

assemblyþHMMER to refer to the complete pipeline, where ‘as-

sembly’ can be replaced by the name of a specific sequence

assembly tool. This pipeline was used to classify query reads

into input families based on the following steps: (i) use de novo

sequence assembly tools to generate contigs from query reads, (ii)

use HMMER to align translated contigs against input families

and (iii) classify reads in the aligned regions of the contigs into

the corresponding families. The inputs to HMMER and HHblits

are always the translated peptides from the reads or contigs. For

simplicity, when we say we classify reads into protein domain

families using HMMER or HHblits, the translated peptides are

actually used.
For the first two experiments, annotated reference genomes

were available. We first determined the true membership of

query reads based on protein domain annotations and read map-

ping positions in the genome. We then classified query reads into

input families using four different types of classifiers: HMMER,

HHblits, assemblyþHMMER and SALT. Performance of the

classifiers was determined by comparing the true membership

of reads and predicted membership by the classifiers. We used
four metrics to evaluate the performance of classifiers: sensitivity,

false positive rate (FP rate), positive predicted value (PPV) and

F-score. Let D represent an input family. Let A and B be the set

of positive and negative reads of D, respectively. Let C be the set

of reads classified to D by a classifier. The sensitivity of a clas-

sifier is defined by jA\Cj
jAj . The FP rate is defined by jC�Aj

jBj . The PPV

is defined by jA\Cj
jCj . The F-score considers both sensitivity and

PPV and can be used as a single metric to evaluate the perform-

ance of a classifier. It is defined by

F� score ¼
2� sensitivity� PPV

sensitivityþ PPV
:

To compare the performance of the classifiers on all input

families, we first calculate a metric for each input family and

report the average of the values of the metric over all input

families.
In the last experiment, we conducted protein domain classifi-

cation on an RNA-Seq dataset sequenced from a non-model

organism. Although we did not have the annotations of the ref-

erence genome, we were able to show that SALT identified more

transcribed protein domain families that were related to this

species.

4.1 Protein domain classification of very short reads

In this experiment, we conducted protein domain classification

on an Illumina RNA-Seq dataset sequenced from the transcrip-

tome of one strain of Burkholderia cenocepacia named AU1054

in the growth medium cystic fibrosis (Yoder-Himes et al., 2009).

We downloaded 3 361 008 reads of 41bp from the website pro-

vided by the authors. For assemblyþHMMER, we chose Velvet

(Zerbino and Birney, 2008) and SSAKE (Warren et al., 2007)

because Velvet is widely used and SSAKE is designed for

very short reads. The experimental results show that SALT has

much better performance than HMMER, HHblits and

assemblyþHMMER in classifying very short reads.

4.1.1 Determining the true membership of reads First, we down-

loaded the genome and its protein domain annotations from the

IMG website (http://img.jgi.doe.gov/). There are 2181 annotated

protein domains. Second, we mapped the reads back to the
genome using Bowtie (Langmead et al., 2009), with two mis-

matches allowed. Third, we compared the mapping positions

of the reads and protein domains in the genome. Let l be the

length of the overlap between a read and a protein domain and L

be the length of the read. If l 	 0:8L, this read has a significant

overlap with the protein domain and is thus defined to be a

positive read of the protein domain family. If l50:5L, the over-
lap is insignificant, and this read is a negative read of the protein

domain family. Otherwise, the significance of the overlap is am-

biguous, and this type of read was not evaluated in our

experiments.

4.1.2 Performance evaluation Of the 2181 annotated protein
domain families, we are interested in those that are transcribed

in the input dataset. There is no commonly accepted criterion to

define transcribed protein domains. In this work, we define pro-

tein domains that have at least 10 mapped reads as transcribed
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protein domains. There were 378 protein domain families with at

least 10 mapped reads, which were used as the input families.

When we adjusted this threshold, the performance comparison

between different classifiers was generally unchanged.
We tried several different k-mer sizes for SSAKE and found

that when the k-mer size was 16, SSAKE had the best overall

performance. It generated 25 944 contigs with an average length

of 60.36 bp. For Velvet, we used VelvetOptimizer (bioinfor-

matics.net.au/software.velvetoptimiser.shtml) to search for the

best assembly result by trying k-mer sizes from 15 to 39bp.

We tried both ‘Lbp’ and ‘tbp’ as the optimization function of

VelvetOptimiser. The former optimizes the total number of base

pairs in large contigs and the latter optimizes the total number of

base pairs in all contigs. We found that ‘Lbp’ produced much

higher sensitivity with similar PPV compared with ‘tbp’ and the

optimal k-mer size for ‘Lbp’ was 25. Therefore, we report the

performance of VelvetþHMMER using ‘Lbp’ as the optimiza-

tion function. For SALT, we set � to the default value (0.3) for

the filtration stage. On average, 0.23% of the input reads passed

the filtration for one input family, showing that only a small

portion of reads could pass the filtration stage and be used as

the input to the graph construction. The overlap threshold k�

was set to 20 by default (k� ¼ read length
2 ). The average number of

nodes and edges in a hit graph were 1575 and 1879, respectively.
E-value cutoffs determine the trade-off between sensitivity and

FP rate of all classifiers. We plotted the ROC curves of these

classifiers by changing the E-value cutoff of HMMER and

HHblits from 10 to 10�9 with ratio 0.1 (Fig. 3).
HMMER was highly specific with FP rate � 1:2� 10�7.

However, its sensitivity was only 9.81% even with relaxed

E-value cutoffs. When the E-value cutoff was changed from

10�5 to 10�6, its sensitivity dropped significantly. When the

E-value cutoff was 510�6, its sensitivity was almost 0. Both

HHblits and SSAKEþHMMER had low sensitivity and high

FP rate. The highest sensitivity of HHblits was 6.72% and its

lowest FP rate was 6:75� 10�7. The highest sensitivity of

SSAKEþHMMER was 8.25% and its lowest FP rate was

1:65� 10�6. Although Velvet generated longer contigs than

SSAKE, both of them missed most positive reads. The sensitivity

of SALT was much higher than that of HMMER and

VelvetþHMMER with a comparable FP rate. The experimental

results also show that when we increased the E-value cutoff from

0.01 to 10, the performance of these classifiers remained almost

unchanged. To boost the sensitivity of HMMER, HHblits and

assemblyþHMMER, we used 0.01 as their default E-value cutoff

in our experiments hereafter unless otherwise specified. Based on

this experiment, the default E-value cutoff for SALT was set to

10�6. Although this is a stringent cutoff, as it yields good trade-

off between sensitivity and PPV for very short reads, it is

expected to be appropriate for datasets containing longer

reads. Table 1 compares the average performance of these clas-

sifiers under their default E-value cutoffs.

HMMER had the lowest FP rate and Velvet had the highest

PPV. However, SALT had much higher sensitivity with good FP

rate and PPV. Therefore, its F-score was significantly larger than

the other classifiers, showing that it had the best overall classifi-

cation performance. The running time of HMMER was much

smaller than that of the other classifiers. The filtration stage of

SALT is the bottleneck and costs most of the running time. The

average running time of the three stages of SALT was 6.20min,

2.47min and 0.01min, respectively. Because different input

families can be analyzed independently, parallelization tech-

niques can be applied to speed up this stage. This will be part

of our future work.
As we described in the ‘Methods’ section, the filtration stage

trades specificity for sensitivity. It determines the upper bound of

the sensitivity of SALT using loose score cutoffs. The remaining

stages are used to reduce the high FP rate introduced by the

filtration stage. Our experimental results are consistent with

the expectation. After filtration, the sensitivity was 39.32% and

the PPV was 13.22%. The final sensitivity and PPV were 21.10%

and 85.44%, respectively.

4.2 Protein domain classification of an RNA-Seq data

of Arabidopsis

In this experiment, we applied SALT to an RNA-Seq dataset

sequenced from a normalized cDNA library of Arabidopsis using

paired-end Illumina sequencing (Marquez et al., 2012). There

were 9 559784 reads of 76 bp from each end. The length of

query reads was much longer than in the first experiment. We

used Velvet and Oases (Schulz et al., 2012) as the de novo se-

quence assembly tools in the assemblyþHMMER pipeline.

Oases takes into account a dynamic range of expression levels

and is specially designed for the assembly of RNA-Seq data. The

experimental results show that although HMMER, HHblits and

assemblyþHMMER have higher sensitivity with long query

reads, SALT still had the best performance.
We used the starting ends of the paired-end reads as our

benchmark dataset. We downloaded all the coding sequences

(CDS) of Arabidopsis thaliana reference genome version

TAIR10 (www.arabidopsis.org) and mapped the reads to the

CDS using Bowtie with two mismatches allowed. Totally,

30.26% of the reads were mapped to the CDS. We annotated

the protein domains in the CDS using HMMER with gathering

thresholds. The set of reads mapped to each protein domain was
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Fig. 3. ROC curves of different classifiers. HHblits and

SSAKEþHMMER are listed in separate embedded windows because

their FP rates are orders of magnitude larger than others
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determined using the same methodology as in the first experi-

ment. There were 3188 protein domain families with at least 10

mapped reads.

Velvet achieved the best assembly result when the k-mer size

was 45. It generated 44161 contigs with an average length of

443.99 bp. The range of k-mer sizes used for Oases was from

31 to 61, and it generated 57824 contigs with an average

length of 356.46 bp. All parameters of SALT were set to their

default values. Specifically, k� ¼ 38 because the read length is 76.

Table 2 shows the comparison of the average performance of

these classifiers on all input families.
SALT had the best performance on all metrics (Table 2).

OasesþHMMER had better sensivitiy and similar PPV com-

pared with VelvetþHMMER. However, both its sensitivity

and PPV were much lower than for SALT. For all input families,

the total number of reads correctly classified by SALT,

HMMER, HHblits, VelvetþHMMER and OasesþHMMER

were 968 068; 681 306; 741160; 681 831; and 776,805, respect-

ively. Significantly, more reads (41:91� 105) were correctly

identified by SALT. Meanwhile, the sensitivities of all classifiers

were significantly improved compared with those in the first ex-

periment. This shows that profile HMM-based methods have

better discriminative power with long sequences. Although

VelvetþHMMER and OasesþHMMER correctly classified

more reads than HMMER alone, their average sensitivities

over all families were much lower than that of HMMER. A

closer look at the results showed that Velvet/OasesþHMMER

tended to perform well on highly transcribed families but missed

a majority of reads for lowly transcribed families. On the other

hand, HMMER and SALT are not as sensitive as Velvet and

Oases to the transcriptional levels of domains. Thus, the numbers

of families that are identified as transcribed by VelvetþHMMER

and OasesþHMMER are smaller than for the other classifiers.
To show the performance of different classifiers on input

families of different transcription levels, we investigated the per-

formance of HMMER, VelvetþHMMER, OasesþHMMER

and SALT on transcribed families when we changed the thresh-

old for the number of mapped reads from 10 to 100 with a step

size of 10. For input families that have at least 100 mapped reads,

the reads per kilo base per million was 193.81. The performance

of HMMER remained almost unchanged when we changed the

threshold. This is because HMMER aligns each read

independently. The sensitivity of VelvetþHMMER increased

from 35.93% to 38.18%, and its PPV increased from 64.45%

to 72.58%. The sensitivity of OasesþHMMER increased from

42.30% to 44.32%, and its PPV increased from 64.59% to

75.52%. The sensitivity of SALT increased from 58.46% to

59.39%, and its PPV increased from 87.89% to 91.05%. These

results show that while Velvet/OasesþHMMER require suffi-

cient coverage to assemble short reads, SALT can assemble

short reads of variant coverage and achieves better classification

performance.

4.3 Protein domain classification of a non-model organism

In this experiment, we show the utility of SALT in classifying a

paired-end RNA-Seq dataset from the non-model organism

Radix balthica (Feldmeyer et al., 2012) into protein domain

families. When the reference genome is not available, read map-

ping and genome annotation cannot be used to provide ‘ground

truth’ about read membership. Thus, we focus on comparing the

transcribed domains as well as the total number of reads classi-

fied into these families. In this experiment, the pipelines of

assemblerþHMMER will be represented by the assemblers’

names for simplicity.

We first downloaded the dataset from NCBI SRA

(SRP005151). There are 8 283 222 reads of 101 bp in each end.

We also downloaded the contigs generated by several de novo

sequence assembly tools from Feldmeyer et al. (2012). These

tools include Velvet, SeqMan NGen (http://www.dnastar.com/

t-sub-products-genomics-seqman-ngen.aspx) (hereafter called

NGen) and Oases. The authors used 31 as the k-mer sizes for

Velvet and NGen. For Oases, they used both 21 (Oases21) and

31 (Oases31) as k–mer sizes.
We searched for the keywords ‘animal’and ‘snail’ in the Pfam

website and obtained a list of 84 protein domain families that

had these keywords in their description. These protein domain

families were used as input families. If410 reads could be clas-

sified to a family, we report that this family is transcribed.

We aligned the contigs generated by the assembly tools against

the input families using HMMER, with 0.01 as the E-value

cutoff. The parameters we used for SALT were as follows:

� ¼ 0:3 (default) and E-value¼ 10�6 (default); k� ¼ 41. As the

reads are much longer than for the previous two experiments, we

used a smaller k� than the default value (50). Our choice of k� is

Table 1. Performance comparison of SALT against the other classifiers

on the RNA-Seq dataset of Burkholderia cenocepacia

Classifiers Sens (%) FP rate PPV (%) F-score Time (m)

HMMER 9.81 1.20e-07 89.37 0.1767 0.03

HHblits 6.40 4.51e-05 27.86 0.1041 0.65

SSAKE 8.06 7.23e-06 50.53 0.1415 1474

Velvet 9.50 2.16e-07 94.03 0.1725 2.50

SALT 21.10 3.00e-07 85.44 0.3385 8.68

Note: All these classifiers were run on a 2.2GHz dual-core AMD Opteron machine.

The running time is the average running time on all input families. ‘SSAKE’ and

‘Velvet’ represent the pipelines of SSAKEþHMMER and VelvetþHMMER, re-

spectively. The optimal value for each metric is highlighted in bold.

Table 2. Performance comparison of SALT against the other classifiers

on the RNA-Seq data set of Arabidopsis

Classifiers Sens (%) FP rate PPV (%) F-score Time (m)

HMMER 49.72 2.45e-06 86.26 0.6308 0.31

HHblits 50.09 2.32e-04 14.91 0.2298 11.98

Velvet 35.93 9.19e-06 64.45 0.4614 57.65

Oases 42.30 1.02e-05 64.59 0.5112 400.21

SALT 58.46 2.84e-06 87.89 0.7021 171.65

Note: All these classifiers were run on a 2.2GHz dual-core AMD Opteron machine.

The running time is the average running time on all input families. ‘Velvet’ and

‘Oases’ represent the pipelines of VelvetþHMMER and OasesþHMMER, respect-

ively. The optimal value for each metric is highlighted in bold.
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already larger than k-mer sizes used by the tested assembly tools

and is not likely to introduce random overlaps.
Even with a more stringent E-value cutoff, SALT identified 23

transcribed families, which are more than the other classifiers.

Moreover, it classified 4457 reads into transcribed families,

which are more than the other classifiers except NGen (8338

reads). Although NGen classified the largest number of reads,

it only identified 13 transcribed families, which are thus likely to

be highly transcribed families. Consistent with our second experi-

ment, Velvet identified a smaller number of transcribed domains

than SALT. A complete list of the number of identified tran-

scribed families and classified reads by these classifiers can be

found in Supplementary Table S1. The relationship between the

sets of transcribed domains identified by different strategies is

shown in Figure 4.
SALT identified seven transcribed families that were not iden-

tified by any other tool. To verify these uniquely identified

families, we investigated whether these domains existed in the

contigs generated by the sequence assembly tools. The output

of running HMMER between these families and the contigs

included statistically significant alignments. However, the

number of reads consisting of the aligned regions was510, and

thus these domains were not reported as transcribed by

assemblyþHMMER. This indicates that these domains are likely

to be transcribed, but the de novo sequence assembly tools failed

to assemble many positive reads in the dataset.
SALT is able to identify more functional protein domains that

reflect the species’ reactions to the environment (Supplementary

Table S2). For example, PF07829 is an alpha-A conotoxin

PIVA-like protein family. It is the major paralytic toxin found

in the venom produced by the piscivorous snail Conus purpuras-

cens (Finn et al., 2010). The detailed annotations of these families

are listed in Pfam’s website.

5 DISCUSSION

Most existing domain analyses in RNA-Seq data still rely on

traditional domain classification tools. In this work, we analyzed

why a commonly used tool HMMER can incur low sensitivity

for analyzing NGS data. We conducted a correlation study be-

tween the sensitivity of HMMER and other features based on

the dataset in the second experiment. These features included the

following: (i) the alignment score between the domain region and

the input family (F1); (ii) the length of the domain region in the

transcript (F2); and (iii) the normalized alignment score of the

domain region in the transcript (F3), defined as F3 ¼
F1

F2
: The

correlation coefficients between the sensitivity and these features

were �0.0214, �0.0788 and 0.8415, respectively. The normalized

alignment score of the domain region in the transcript had a

strong positive linear relationship with the sensitivity of

HMMER. This implies that reads sequenced from close homo-

logs of a domain family can be better classified using profile

HMM-based methods. On the other hand, reads sequenced

from remote homologs of a domain family are harder to classify.

We further found that the correlation coefficient between the

sensitivity and average pairwise sequence identity in a domain

was 0.5728. This indicates that the performance of profile

HMM-based methods is related to the sequence conservation

level of a domain.

The choice of parameters is important for SALT to provide

good overall performance. Here, we give some analysis of the

parameter K, the number of generated candidate contigs. The

default value of K is the number of sinks in the hit graph.

When the graph size is small, this K value works well.

However, when the graph size is large, such as the hit graphs

constructed from metagenomic datasets, the efficiency of SALT

will decrease significantly. Theoretically, the number of

sequenced contigs of a domain is the product of the average

number of contigs in a domain and the number of copies of

the domain in the genome. The former one can be estimated

by the sequencing depth, and the latter can be inferred from

existing domain organizations in Pfam. This approximation pro-

vides a better trade-off between classification performance and

efficiency. However, if the users do not have good estimates for

these values, the default K value is recommended.
The filtration stage of SALT dominates the time complexity of

SALT. As alternatives to PPST used in this stage, we could use

HMMER or HHblits to align query reads against the input

families. However, as shown in our experiments, both

HMMER and HHblits have low sensitivity for short reads.

Therefore, PSST is an important strategy that increases the sen-

sitivity of SALT. For long query reads, we could use HMMER

or HHblits in the filtration stage to obtain a better trade-off

between sensitivity and running time.

6 CONCLUSION AND FUTURE WORK

In this work, we introduced SALT, designed for transcriptomic

data of organisms without high-quality reference genomes.

Experiments on two RNA-Seq datasets from annotated genomes

showed that SALT had higher sensitivity than existing tools with

comparable specificity. When we applied SALT to an RNA-Seq

dataset of a non-model organism, SALT identified more tran-

scribed species-related families than alternative pipelines.
We plan to adapt SALT to domain classification in metage-

nomic data. In addition, where protein families are available, we

will test SALT’s performance on gene assembly. We also plan to

improve the efficiency of SALT in several aspects. First, the hit

graph construction is currently implemented using the Python

library of NetworkX (http://networkx.lanl.gov/). The overhead

of object constructions can be greatly decreased if we implement

it using Cþþ. Second, the independence of different input

Fig. 4. Numbers of unique and shared transcribed families identified by

different classifiers
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families allows us to use parallelization techniques such as MPI.
Finally, we will provide users with a systematical way to better
estimate K based on the sequencing data and domain
information.
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